SETTINGS
settings section [Edit on GitHub]
Keywords
Keyword descriptions
- AUTO_ENU_TOL: real = 0.00000000E+000
Tolerance to recompute the LAPW linearisation energies. [Edit on GitHub]
- FFT_GRID_SIZE: integer[3] = 0 0 0
Initial dimenstions for the fine-grain FFT grid [Edit on GitHub]
- FP32_TO_FP64_RMS: real = 0.00000000E+000
Density RMS tolerance to switch to FP64 implementation. If zero, estimation of iterative solver tolerance is used. [Edit on GitHub]
- NPRII_AUG: integer = 20
Point density (in a.u.^-1) for interpolating radial integrals of the augmentation operator [Edit on GitHub]
- NPRII_BETA: integer = 20
Point density (in a.u.^-1) for interpolating radial integrals of the beta projectors [Edit on GitHub]
- NPRII_RHO_CORE: integer = 20
Point density (in a.u.^-1) for interpolating radial integrals of the core charge density [Edit on GitHub]
- NPRII_VLOC: integer = 200
Point density (in a.u.^-1) for interpolating radial integrals of the local part of pseudopotential [Edit on GitHub]
- PSEUDO_GRID_CUTOFF: real = 1.00000000E+001
Hard cutoff of the pseudopotential radial grids (a.u.) [Edit on GitHub]
- RADIAL_GRID: string
Default radial grid for LAPW species. [Edit on GitHub]
- REAL_OCCUPATION_MATRIX: logical = F
Lone keyword:
T
Force occupation matrix of DFT+U+V method to be strictly real. [Edit on GitHub]
- SHT_COVERAGE: integer = 0
Coverage of sphere in case of spherical harmonics transformation [Edit on GitHub]
- SHT_LMAX: integer = -1
Maximum orbital quantum number for which spherical coverage need to be generated. [Edit on GitHub]
- SIMPLE_LAPW_RI: logical = F
Lone keyword:
T
Simplified calculation of LAPW radial integrals. [Edit on GitHub]
- SMOOTH_INITIAL_MAG: logical = F
Lone keyword:
T
Use more expensive but more accurate way to compute initial magnetisation in PP-PW case. [Edit on GitHub]
- USE_COARSE_FFT_GRID: logical = T
Lone keyword:
T
If true, coarse FFT grid is used to apply Hamiltonian and compute charge density from wave-functions. [Edit on GitHub]
- XC_USE_LAPL: logical = F
Lone keyword:
T
When true, use Laplacian in the expression for GGA; otherwise use divergence of gradient. [Edit on GitHub]